
Closed Loop RRT for Truck-Trailer System
Project Report for ME 8843 YEZ

Bhushan Pawaskar
School of Aerospace Engineering

Georgia Institute of Technology
Atlanta, US

bpawaskar3@gatech.edu

Abstract—Truck-trailer systems are widely used in various
industries for transporting goods. These systems have to function
in dynamic warehouse environments and require accurate and
efficient planning to ensure a safe operation. But, due to the
nonlinear dynamics of the system, traditional motion planning
methods may not be suitable for generating feasible paths in real-
time. This report proposes the use of a sampling-based motion
planning algorithm for a truck trailer system. In particular,
using Closed Loop Rapidly Exploring Random Tree (CL-RRT)
to generate collision-free paths for the truck-trailer system while
performing U-turn maneuver in compact spaces. The report
explores the challenges faced in the implementation of such
an algorithm on a non-holonomic system. The effectiveness of
the proposed method has been shown through experiments in
simulation. The results show that several performance benefits
can be obtained and the proposed approach can prove to be a
promising solution for real-time path planning while ensuring
the kino-dynamic constraints are satisfied.

Index Terms—Kinodynamic Planning, Rapidly Exploring Ran-
dom Trees, Truck-Trailer System, Real-time planning

I. INTRODUCTION

The logistics industry is rapidly evolving, and there is a
growing need for a cost-effective transportation of goods from
one place to another. Autonomous trucks have emerged as a
promising solution to address these challenges, as they can
reduce costs by eliminating the need for human drivers. How-
ever, the deployment of autonomous trucks in dynamically
changing warehouse environments poses several challenges,
including motion planning in real-time. These trucks have
to plan a collision-free path in order to maneuver through
compact spaces. A fast real time planning method is required
for this purpose.

Sampling based motion planning methods have become very
popular in the past few decades. They provide fast exploration
of high-dimensional state spaces and also offer probabilistic
completeness guarantees. Rapidly-Exploring Random Trees
(RRT) [1] is one such sampling based algorithm used for
quickly exploring a complicated, high-dimensional state space.
The algorithm offers several performance benefits over other
convex optimization based algorithms that allow it to be
used for real-time applications. Over the past few decades,
RRTs have been used in numerous robotic systems, including
DARPA Urban Challenge vehicles, autonomous driving sys-
tems used in in public settings, humanoid robots.

However, Vanilla RRT algorithm has several drawbacks that
make it not directly usable for real-world systems [4]. Firstly,
the algorithm does not provide any optimality guarantees.
It just generates a feasible path which may or may not be
optimal. In addition, it is highly sensitive to initial conditions
and sampling strategy used. This can have a lot of impact on its
performance. Also, the algorithm suffers from the curse of di-
mensionality. As the dimension of the search space increases,
it becomes more and more computationally expensive. Lastly,
the path generated by RRT only considers a path that connects
the discrete points in the state space via the interpolated points
in between. It does not respect the kinodynamic constraints of
the system and the generated path may or may not be actually
feasible.

There are various variants of RRT algorithm that address
one or many of these mentioned drawbacks. Bi-driectional
RRT starts the tree exploration from both start and goal
node resulting in improvement in efficiency of the algorithm.
Control based RRT planners for example generate only kino-
dynamically [2] feasible paths for the system. Algorithms like
RRT* [3] address the suboptimality of the paths generated by
the algorithm. A cost function is used to guide the growth
of the tree towards the goal region and the tree is rewired to
ensure optimality.

Closed Loop RRT (CL-RRT) [5] is one such popular
alogirthm that was first introduced for team MIT’s entry
vehicle for the 2007 DARPA Urban Challenge, Talos. For the
competition, their team needed to develop an algorithm that
was efficient, real-time and could dynamically re-plan with
changing obstacles in the environment. This algorithm not only
takes into consideration the feasibility of the generated path
but also provides rapid exploration of the space by using a
closed loop system with a low level controller for sampling
the space. Moreover, this method can also provide probabilistic
optimality guarantees.

The report is organized into five major sections. The intro-
duction is the first section and talks about the need for using
sampling based algorithms like RRT for motion planning,
their advantages and drawbacks. The second section is a
preliminaries section that gives a high level overview of the
CL-RRT algorithm and its key concepts. The third section,
Methodology will talk about the truck-trailer vehicle model
and the changes needed in adapting the CL-RRT algorithm for



that model. Lastly section 4, results and discussion talks about
the benefits of using this method over standard approaches and
section 5 is conclusion

II. PRELIMINARIES

In this section, we will briefly look at the CL-RRT [5]
Algorithm implemented by the MIT team and also cover the
key highlights of the paper.

A. Low Level Controller

A stable closed-loop control architecture based on a refer-
ence tracking controller is crucial for the CL-RRT algorithm
to function. The existing randomized kinodynamic planning
algorithms first sample a reference state. Then they find a con-
trol input u(t) to reach that state by sampling multiple control
inputs u(t) directly or by back-calculating the required input
u(t) to reach that state. This is computationally expensive.

Fig. 1. Closed-loop prediction. Given a reference command , the controller
generates high rate vehicle commands to close the loop with the vehicle
dynamics

The approach taken by CL-RRT to this is it directly passes
in the sampled state to the stable-closed loop system as a
reference state. The low level controller then tries to minimize
the error and drives the system towards the reference state.

In the case of the MIT vehicle, a bicycle model [8] was used
to model the vehicle dynamics and thus the tracking low level
controller used for that were the pure pursuit controller [10]
for lateral tracking and a simple PI controller for longitudinal
tracking. In that case, the reference passed to the controller
were the x,y coordinates of the sampled points and the
commanded velocity of the controller.

B. Cost heuristics

After the sampling step, RRT attempts to connect the
sampled node to the nearest nodes in the tree. Determining
the nearest nodes in the tree requires a heuristic function.
Typically, L2 norm or the euclidean distance is used as the
heuristic function. But doing so for a non-holonomic system
can be highly inaccurate. Consider the example where the
algorithm samples a reference configuration to the side to the
vehicle. The euclidean distance would not work in such a case
as the vehicle cannot move sideways. It would need to take a
longer path to reach that point.

This can be addressed by performing a propogation step
to estimate the distance. But doing it online can take lots of
computing resources. This challenge was solved in the CL-
RRT paper using a different heuristic. They used Dubin’s path
to estimate the distance to find the closest node. A Dubins path

Fig. 2. A sample dubin’s path consisting of three components

is a type of curve that connects two configurations of a non-
holonomic vehicle, while respecting the vehicle’s constraints
on motion. The Dubins path is the shortest possible path
and it consists of a sequence of three basic maneuvers: a
constant radius turn to the left or right, a straight line segment,
and another constant radius turn in the opposite direction.
The nice thing about this approach is that there is a closed
form analytical solution available to estimate the length of the
Dubin’s path which saves computation time.

C. Smart sampling

The motion planner generally is accompanied by a high
level navigator that decides the vehicle behavior. This level
of abstraction has more information about the system since it
has access to the high level map of the system. The behavior
planner knows the kind of action for which a trajectory must
be planned. eg. like executing a parallel parking maneuver or
executing a left-side U-turn.

This information can be used to make the planning algo-
rithm even more efficient. Based on the kind of maneuver that
is being performed we can smartly sample the state space to
save time. This can make the algorithm much faster in real-
time implementation.

Consider setting the values for two parameters each along
two (r (radial) and θ (angular)) dimensions: θmean, θvar,
rmean, rvar. Using these, we can define a normal distribution
in the polar coordinates to sample points from. A straight
maneuver on the highway for example will contain sampling
points from a distribution in the front of the vehicle with a
narrow field of view. While a left turn maneuver will require
a distribution that is wider and at an angle towards the left.

D. Dynamic replanning

This is one of the most important aspects of the algorithm
which makes it so much better than its predecessors. Typically,
sampling algorithms will try to sample points till a path
towards the goal point is found. Only then will the agent start
to move as per the trajectory found. CL-RRT on the other
hand takes a different approach. The algorithm tries to search
for a path for a specific amount of time until it times out.
After the time-out the algorithm evaluates the best possible
path out of all the possible paths based on a certain heuristic.
The agent then proceeds in the direction of that path and
starts recomputing the paths again. At any given moment, the
agent only plans forward paths for a finite time horizon. It
keeps on planning further paths as it executes the best feasible
trajectory at any given time step. And then again selects a



Fig. 3. Finite horizon planning for CL-RRT

new best trajectory to be executed after a particular time-step.
Such finite horizon planning not only allows the planner to
account for dynamic obstacles but also gives huge performance
improvements

III. METHODOLOGY

Implementation of CL-RRT on the MIT vehicle used bicycle
model to model the vehicle dynamics. To use the algorithm
for a truck-trailer system however several changes need to be
made to the algorithm to adapt it for our system.

A. Vechicle Model

The truck-trailer system belongs to a class of general n-
trailer systems. [13] Using the non-holonomic constraints,
a recursive formula can be analytically derived that relates
heading and velocity of each trailer to the one before in the
n-trailer system using system parameters like:

• Mi: Length of hitch between trailer i and i+ 1
• Li: Length of trailer i
• vi: velocity of trailer i
• θi: global-heading of trailer i
• α: Steering angle

Fig. 4. Figure illustrating general n-trailer system

Such a system can be then simplified to a truck and trailer
system with only 4 state variables:

• x: x location of rear axle of trailer
• y: y location of rear axle of trailer
• θ: global heading angle of trailer
• β: angle between truck and trailer
The inputs to this model are also obtained in a simplified

form:
• v: velocity applied at the rear axle of truck

Fig. 5. Vehicle model of the truck-trailer system

• α: steering angle
The model thus obtained, is almost similar to the bicycle

model in that the inputs required are the same and thus, we
can use a pure-pursuit controller for lateral tracking and PID
controller for the longitudinal tracking of references.

B. Stabilizing Dynamics

If the system is unstable, The CL-RRT algorithm requires
a stabilizing controller to track the references passed into the
closed loop system. Even though the truck-trailer system is
similar to the bicycle model in some ways, the system is only
stabilizing in the forward direction. In reverse direction, the
state variable β is not stable.

Fig. 6. Using an LQ controller to stabilize β

Thus, a pure-pursuit controller cannot be used directly for
the reverse motion. So we use a gain-scheduled LQ controller
[11] to stabilize β to an equilibrium value βe for the reverse
motion.

C. Cost Heuristics

A dubin’s path proved to be computationally efficient quick
way of estimating the costs to the nearest node for the bicycle
model. The truck-trailer model however cannot use such a
heuristic due to the dynamics being much more complex and
unstable in the reverse direction.

A modified dubin’s path [13] can be used with an approach
arc but computing the approach arc for each of the nodes
turns out to be expensive. So we consider using lookup
tables. Lookup tables are pre-computed offline and contain
information about the estimated distance to each point in a
discretized grid map. While running the algorithm online, the
only computation that needs to be made is interpolating the
values from the lookup tables.

The pure-pursuit controller is made to follow different end
positions on a discretized grid map for a maximum of 1000



time steps. The tolerances for reaching the goal are relaxed
in order to get estimates for points which can’t be exactly
reached. The cost to each point is then calculated as per the
given equation [7]:

Fig. 7. Estimated costs on the discretized gridmap

D. Dynamic replanning
The CL-RRT algorithm has two major steps of functioning:
• Execution loop of RRT
• Expansion of tree

In the execution loop, the RRT algorithm chooses the best
node at any given time-step and executes the trajectory towards
that node. In the tree-expansion loop, the algorithm rapidly
samples new points and tries to expand the tree to explore the
state space. During run-time, these steps occur simultaneously
and thus save a lot on computation time. However, due to
limitation of computational resources, running both of these
loops in parallel is not possible. So, we demonstrate the proof
of concept by running the loops one after another. When the
tree expansion step is running, the time is frozen so that the
execution loop does not skip ahead.

Fig. 8. Comparing CL-RRT execution to our method (not parallelized)

We can still obtain results to evaluate if this finite horizon
planning gives better performance or not, however it should

be noted that the time obtained in these results is not the
actual time but a modified time that assumes the two loops
of tree expansion and RRT propagation have taken place
simultaneously.

E. Experiments

The goal of the project was to see how well a truck-
trailer system could perform a u-turn maneuver in compact
spaces. This was chosen as the goal because a u-turn maneuver
requires going back and forth to be executed. And the reverse
dynamics of the truck are not stabilizing. So this makes it
challenging for the truck to execute. To test this, the following
test environments were made in MATLAB. The first is a
larger environment with two U-turn maneuvers in the opposite
direction. The second has just a single maneuver in one
direction.

Fig. 9. Test environment 1: used to evaluate performance of the truck-trailer
system for various timesteps

• In the first experiment, we ran an iteration of control
based RRT to see how much time does the algorithm
take to plan and then traverse to its end location. This
was then compared to the CL-RRT timing for the same
loop for two different time steps of 8 seconds and 15
seconds respectively.

• In the second experiment, points were sampled only from
a specific region which might make a left u-turn easier.
This was done to evaluate the effectiveness of smart
sampling. These were sampled from a two regions of
1. θmean = π/4, θvar = 2π/3, rmean = 12, rvar = 8
2. θmean = −π/4, θvar = 2π/3, rmean = 18, rvar = 12

Fig. 10. Test environment 2: used to compare performance of smart sampling
vs uniform sampling



Fig. 11. Comparison of average time for both environments

IV. RESULTS AND DISCUSSION

In general, the results were pretty consistent for the smaller
environment with just one maneuver to be performed. This
was because the solver was able to find a solution relatively
quickly. On the other hand, the results for the larger envi-
ronment were inconsistent and more dependent on the RNG.
Hence, all results shown in this report have been averaged over
5 different rng runs.

A. Experiment 1

Fig. 12. Comparison of CL-RRT for various time steps

The time-step of the finite horizon for CL-RRT is an
important parameter and can decide how well the algorithm
performs. If the value is too large, then the algorithm per-
forms like other kinodynamic planners and takes long time to
initialize. This also makes it slow to respond to changes in the
environment. If the value is too small, the algorithm cannot
plan for long term, causing the agent to travel around until it
gets lucky and finds a path.

This can be seen in the results. If the values for the time step
is 15 seconds, time is saved as the agent can simultaneously
plan as it travels v/s in the ’inf’ case where the agent first
finds a path and then starts to travel. But if the time step is
further decreased to 8 seconds, the total time increases as the
agent selects paths without long-term planning.

B. Experiment 2

It is expected that by sampling smartly, the system would
perform better. However, the system tends to perform slightly
worse or similar when sampling space is restricted to only a
smaller region. This could be attributed to either bad selection
of parameters for sampling or that sampling like this makes
the system highly sensitive to rng, since if the system selects
a node that takes it too far to one side, it has far lesser chance
of sampling a node to compensate for that.

Fig. 13. Comparison of CL-RRT for various time steps

V. CONCLUSION

The performance of CL-RRT is inconsistent. However, if
lots of samples can be generated to cover most of the sample
space, the results become more and more consistent as seen
with the smaller test environment. CL-RRT did show some
improvements in the time required for planning and execution
however the method is highly dependent on getting the time-
step value right. The optimizations mentioned in sampling
did not seem to yield successful results at least in the test
environment.

A. Limitations

• The current method recomputes the tree every time at
each time step. Ideally, CL-RRT should reuse the previous
tree for efficient computation. However, due to the tree
data structure being implemented in MATLAB back-end
as a C++ object, it was difficult to customize it without
breaking the dependencies. If the tree is reused, better
performance is expected for lower time step values, but
this could not be implemented. The same applies for the
state validator object which is responsible for collision
with obstacles. Ideally, it would have been nice to test
with obstacles that move with time but it was not feasible
to modify it easily.

• The lookup tables are only 2 dimensional and do not
consider the orientation of the truck while estimating
distance. Even though this somewhat works, better results
could be obtained with 3 dimensional lookup tables for
x,y and θ.



REFERENCES

[1] LaValle, Steven M.. “Rapidly-exploring random trees : a new tool for
path planning.” The annual research report (1998): n. pag.

[2] LaValle SM, Kuffner JJ. Randomized Kinodynamic Planning. The
International Journal of Robotics Research. 2001;20(5):378-400.
doi:10.1177/02783640122067453

[3] Sampling-based Algorithms for Optimal Motion Planning - Sertac
Karaman, Emilio Frazzoli https://doi.org/10.48550/arXiv.1105.1186

[4] M. Elbanhawi and M. Simic, ”Sampling-Based Robot Motion Planning:
A Review,” in IEEE Access, vol. 2, pp. 56-77, 2014, doi: 10.1109/AC-
CESS.2014.2302442.

[5] Kuwata, Y. et al. “Real-Time Motion Planning With Applications
to Autonomous Urban Driving.” Control Systems Technology, IEEE
Transactions on 17.5 (2009): 1105-1118. © 2009 Institute of Electrical
and Electronics Engineers

[6] Article: https://www.mathworks.com/help/nav/ref/plannercontrolrrt.html
[7] Article: https://www.mathworks.com/help/nav/ug/reverse-capable-

motion-planning-for-tractor-trailer-model-using-plannercontrolrrt.html
[8] Path Planning using a Dynamic Vehicle Model: Romain Pepy, Alain

Lambert and Hugues Mounier
[9] Article: https://www.mathworks.com/help/mpc/ug/truck-and-trailer-

automatic-parking-using-multistage-mpc.html
[10] Implementation of the Pure Pursuit Path tracking Algorithm R. Craig

Conlter CMU-RI-TR-92-01
[11] Motion planning for a reversing general 2-trailer configuration using

Closed-Loop RRT Niclas Evestedt1, Oskar Ljungqvist1, Daniel Axehill
[12] Motion Planning for a Reversing Full-Scale Truck and Trailer System -

Olov Holmer
[13] Closed-Loop-RRT* path planning for a vehicle-trailer system - Edvard

Grødem
[14] A. C. Manav and I. Lazoglu, ”A Novel Cascade Path Planning Algo-

rithm for Autonomous Truck-Trailer Parking,” in IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 7, pp. 6821-6835, July
2022, doi: 10.1109/TITS.2021.3062701.



VI. APPENDIX

Fig. 14. Selection of best available node if path not found

Fig. 15. Follow trajectory towards best node but only for a fixed time step

Fig. 16. Sample points from only specific regions around the truck

Fig. 17. Thresholds for checking if goal is reached or not

Fig. 18. Tree pruning function but implementation after exporting tree as a
matlab object. Slow implementation. Worse than remaking the tree.


