
Closed Loop LLM-Based Planning and Execution
with Visual Reasoning

Sohan Anisetty
College of Computing

Georgia Institute of Technology United States
sanisetty3@gatech.edu

Archana Kutumbaka
College of Computing

Georgia Institute of Technology United States
archanakutumbaka@gatech.edu

Bhushan Pawaskar
College of Computing

Georgia Institute of Technology United States
bpawaskar3@gatech.edu

Chunyue Xue
College of Computing

Georgia Institute of Technology United States
chunyuexue@gatech.edu

Keywords: Large Language models, Visual Question Answering, Feedback
based Task Planning, Robot Manipulation

Abstract: This paper addresses the issue of incorporating feedback and reason-
ing into robot task planning methods. While humans naturally follow an act-see-
reason-act paradigm, current robot planning approaches often lack the ability to
incorporate feedback from actions and recover from failures. In this research, we
propose a novel approach that combines large language models (LLMs) with a
visual reasoning system (VRS) inspired by the human visual cortex. Our method
involves using LLMs as a planner to break down high-level instructions into ex-
ecutable steps and incorporating a reasoning mechanism that interacts with the
VRS to gather information about task progress and preconditions for successful
execution of subsequent steps. By leveraging this feedback, our system is capable
of recovering from failures and adapting its plans accordingly. Experimental val-
idation is performed on tabletop manipulation tasks, comparing the performance
of our closed-loop planning and execution system against baselines that lack feed-
back integration.

1 Introduction

In our pursuit of embodied intelligence, we aim to accomplish tasks such as ”preparing a meal”
and ”arranging the table,” drawing inspiration from the innate abilities of humans. These tasks
involve a subconscious combination of high-level planning, perceptual feedback, and low-level con-
trol. High-level planning entails setting goals and determining the sequence of actions required for
their achievement. Perceptual feedback involves processing sensory information to understand the
current state of the world and adjust the plan accordingly. Low-level control focuses on executing
specific actions and movements based on the plan and perceptual feedback.

To address complex task planning problems, two predominant approaches have historically been
utilized. The first approach, Task and Motion Planning (TAMP) [1, 2, 3], integrates high-level sym-
bolic planning with low-level motion planning. The second approach, Hierarchical Reinforcement
Learning (HRL) [4, 5] methods, decomposes complex tasks into a hierarchy of sub-tasks and learns
policies to accomplish each sub-task independently. However, both these methods lack the ability
to incorporate feedback from past actions into their planning, rendering them susceptible to com-
pounding errors. Incorporating the outcomes of previous actions into future planning is challenging
due to the requirement for a deep understanding of real-world semantics and knowledge.



Recently, Large Language Models (LLMs) have garnered attention within the AI community for
their human-level text completion and instruction-following capabilities. These LLMs demonstrate
a comprehensive understanding of the rich semantics of the world. Leveraging this internalized
knowledge, some researchers have explored the use of LLMs in robot planning, departing from
traditional symbolic approaches to high-level task planning. For instance, a few-shot LLM planner
has been proposed to leverage the internalized knowledge of LLMs. Another approach introduced
feedback by incorporating the success value of executed actions. However, these methods fail to
reason about the scene and identify whether preconditions for successful execution of subsequent
steps have been met, hindering their ability to recover from failure.

In this paper, we present a novel approach that addresses the limitations of existing robot task plan-
ning methods. Our approach integrates the semantic understanding and common-sense reasoning
capabilities of large language models (LLMs) with an effective visual reasoning system (VRS), akin
to the human visual cortex. By combining these two components, our objective is to enable robots to
learn from action consequences, reason about execution progress, and dynamically adapt their plans.
Our approach is a cyclic three-stage method that involves 1) Decomposing the overarching task to
simple sub-tasks and their corresponding preconditions using Large Language Models (LLM) [6, 7],
2) Executing them using low-level language grounded policies [8, 9] which are equivalent to learnt
skills of humans like ’picking’ and ’placing’ and 3) Providing feedback about progress of tasks
executed in history back to the LLM for re-planning. This feedback-based planning at each step al-
lows the model to adapt to unanticipated failure modes and recover effectively. Our approach relies
on Visual Language Models(VLMs)[10, 11, 12, 13, 14] to infer semantic and spatial information.
Being trained on large-scale internet data, these VLMs generalize poorly to synthetic tabletop envi-
ronments. We adapt existing VLMs to robotic applications by fine-tuning on data from the Clevr[15]
visual reasoning synthetic dataset and also develop a custom synthetic tabletop dataset to generate
randomized data for multiple block based tasks like stacking and pick-and-place operations. The
key contributions of our work can be summarized as follows:

1. LLM-based Planner: Leveraging the power of LLMs, we develop a planner capable of
breaking down high-level instructions into a sequence of executable steps. By harnessing
the semantic understanding and reasoning abilities of LLMs, our planner generates effec-
tive plans that consider the nuanced requirements of the given task.

2. Reasoning Mechanism with VRS: Our system incorporates a reasoning mechanism that
interacts with the VRS. This mechanism actively seeks feedback from the visual system,
mirroring how humans perceive the consequences of their actions. By asking targeted
questions, the reasoning mechanism gains insights into task progress and identifies the
preconditions necessary for successful execution of subsequent steps.

3. Closed-loop Planning and Execution: The integration of the planner and reasoning mecha-
nism forms a closed-loop cycle. The planner generates an initial plan, while the reasoning
mechanism continuously monitors execution progress and adjusts plans based on visual
feedback. This closed-loop process enables the system to recover from failures, adapt to
changing circumstances, and improve overall task execution efficiency.

To evaluate the effectiveness of our approach, we conduct experiments involving tabletop manipula-
tion tasks. We compare the performance of our closed-loop planning and execution system against
2 baselines: no feedback, and success detection feedback and achieve an average improvement of
16% across tasks compared to other baselines.

2 Related Work

2.1 Task Planning with Language Models

The task planning problem aims to come up with a sequence of actions, or a plan, to achieve a
goal. It requires the agent to autonomously reason about the state of the world using an internal

2



model and also understand the interactions possible. Traditionally, they are approached using Plan-
ning Domain Description Language (PDDL) [16, 17]. PDDL represents the underlying principles
governing a particular domain, such as the available predicates, feasible actions, the composition
of complex actions, and the consequences of executing those actions. PDDL is an action language
and thus describes the parameters, preconditions and effects of every possible action. However, it
is impossible to scale such an action-language approach to open-world settings because we cannot
give a comprehensive description of the physics of the real world. The most successful approaches
for open-world task planning rely on large language models (LLMs) [18] [19]. These models have
an extensive internalized semantic understanding of the world, making them ideal for open-world
task planning. However, their lack of grounding in the real world makes it challenging for them to
generate feasible and situated plans without the context of the current state of the environment, the
set of executable actions, and the consequences of each action. [20], [6] have addressed this issue by
providing context and generating plans using the structure of python code, which helps in grounding
the generated plans because of their structural regulations. Inner Monologue [21] takes a closed-
loop approach and notifies the planner about the success at each stage, resulting in redoing of failed
actions. Building on these methods, our work uses LLMs to generate programmatic situated plans
and pre-conditions/post-conditions for each executable action. We check whether the preconditions
are satisfied before executing an action, and if not, prompt the LLM for a recovery plan. We use the
post-conditions or effects of an action to ensure that the progress of task so far has not been nullified
by a counterproductive action.

2.2 Language-Conditioned Manipulation

[22, 23] have been proposed for conditioning agents with language instructions, but require thou-
sands of human-teleoperated behavior cloning demonstrations. Recent methods like PerAct [9] learn
perceptual representations of actions for 6-DoF manipulation and can learn robust multi-task pol-
icy with just a few minutes of training data using Perceiver transformers[24]. CLIP[25] has been
employed in several robotics and embodied settings in a zero-shot manner [26], or combined with
Transporter networks [27] as in CLIPort [8]. Socratic Models[28] combines several foundation
models (e.g., GPT-3 [29], ViLD [13]) and language-conditioned policies, for manipulating objects
in a simulated vision-based robotic manipulation environment. We use CLIPort to execute actions
provided by the high-level planner in the Ravens[27] simulation environment.

2.3 Visual Reasoning

Masked language modeling and representing images as quantized tokens in vision-language tasks
have seen a rise in popularity following the success of BeIT[30, 31]. OFA[14] introduces a unified
Seq2Seq framework for task-agnostic modeling using an encoder-decoder framework. They pre-
train the model simultaneously on 5 multi-modal and 3 uni-modal tasks. In contrast, BeIT3[32]
regard images as a foreign language and use only one pretraining task; mask-then-predict, to train
a modular Multiway Transformer[33]. However, calculating the full self-attention sequences of
image-text input is computationally expensive and prone to information asymmetry. Instead of
fusing the modalities at the same level, mPLUG[34] fuses vision and language at disparate levels
by using skip connections across the vision encoder layers increasing efficiency. Flamingo[11], a
few-shot model, added cross-attention between image and text encoders and introduced the first
model that can ingest arbitrarily interleaved images, videos, and text. Prior research has indicated
that VLMs suffer in encoding relational information.[35, 15]. Although previous works attempt to
train models on datasets specific to spatial reasoning,[36, 37] they generalize poorly to novel scenes.
The closest body of work to our objective is SORNet[38]. They perform spatial reasoning on a
tabletop stacking task by jointly encoding an image of the scene and an arbitrary number of target
object images using a ViT[39] network. The encodings corresponding to the object queries are
passed through classification networks to classify unary and binary object relations. However, the
requirement of queried object images and task-specific classification networks makes it generalize
poorly to arbitrary objects and renders it unable to function on different tasks without re-training.

3



The VQAv2[40] and VG-QA[41] datasets are popularly used for visual question answering (VQA).
However, both of these datasets consist of general internet data and are not suitable for tabletop
spatial reasoning tasks. Clevr[15] generates both attribute and spatial relationship labels for synthet-
ically generated scenes making it highly customizable and enabling the extraction of ground truth
data for novel scenes.

3 Problem Statement

3.1 Problem Definition

Consider a discretized system of n steps from start state s0 to goal state g(L). We consider the
problem of embodied task planning where an agent needs to generate a sequence of n discrete low
level actions ak, in order to accomplish a high-level natural language instruction L given in english
like ”Place all fruits in the bowl”. The agent has access to observations ok of the world state sk, at
the start of every action ak, in the form of RGB image inputs. The agent has to find a policy function
π such that, given an instruction L, the function maps the observation space to actions that drive the
state toward sn = g(L):

Find : π(ok, L) → ak

∀k ∈ Z : 0 ≤ k ≤ n

constraint to:

f(sk, ak) = sk+1

s0 = start

sn = goal = g(L)

Our model formally consists of the following elements:
sk : world state
ok : world observation
ak : actions
f(sk, ak) : system dynamics
L : Language instruction
ck : code plan
ik : instructions
qk : question queries
rk : response feedback
Refer appendix for details on each of these.

4 Method

Our method comprises of four sub-modules:

1. Controller The controller acts as the central hub, coordinating the planner, actor, and VRS
to execute high-level instructions. It processes information from sub-modules, directing
them to ensure successful task execution and facilitating adaptive decision-making based
on real-time feedback. It is similar to our brain

2. Actor The actor is responsible for carrying out the actions specified by the controller, trans-
lating the planned steps into tangible movements and interactions with the environment.

3. Visual Reasoning System (VRS) The VRS, akin to the human visual cortex, captures
visual feedback and perception of the task execution progress. It actively interacts with the
controller, providing responses for the controller’s queries that are generated by the LLM
during planning. It allows the controller to ensure smooth execution or revert back to LLM
for re-planning when things aren’t progressing as expected.

4



Figure 1: The LLM planner takes input a high-level instruction and generates a codeplan. The
controller gets the scene description (objects on table) from out-of-box object detection method
(ViLD) and creates an executable from the codeplan which comprises of actions and queries for
this tabletop setting and particular task. The actions are executed using an actor (CLIPort) and any
pre-condition failures are detected using our reasoning system and the corresponding feedback is
passed to controller to adaptively modify the executable or prompt the LLM for a new code-plan for
recovery.

4. Planner The LLM planner, with its the semantic understanding breaks down high-level
instructions into a sequence of executable steps and also specifies necessary preconditions
as progress checks. It generates effective plans that consider the nuanced requirements of
the task, enabling the controller to coordinate and direct the execution process.

4.1 Generating codeplans

LLMs [7], [42] have shown great performance as hierarchical planners with few-shot prompting [6],
[43]. Following this line of work, we carefully craft a few simple prompts for the TableTop envi-
ronment assuming low-level skills (pick and place) as action primitives. These prompts are used to
convey the skill repertoire of the actor and the reasoning capabilites of the VRS to the LLM Planner.
To restrict the primitives (skills) available to the LLM, we import them as functions with their proto-
type from the ”actions” module. Similarly the interface with the VRS is also imported as a function
from a ”reasoning” module. The planner expects an ”objects” list which contains existing objects on
the tabletop that are identified using an object detection module (ViLD)[13]. Our prompt needs to
teach the LLM usage of these skills and reasoning abilities and to this end, we provide give example
usage of these imported functions Fig(2(a)) and an example code-plan for task Fig(2(b)). Based on
this, we generate context-agnostic code plans for a set of 3 tasks by asking our chat completion API
to ”Write a code to (instruction)”. Our plans are context agnostic because we only assume access
to an ”objects” list but no assumptions are made about the elements of the list. This helps make
our code plan robust to different initialisations of the tabletop as long as our object detector is re-
liable. In our work, we use ”gpt-3.5-turbo” model from the OpenAI Chat Completion API as our
LLM planner. This code-style task-planning is preferable over conversational style in [21] because
it strictly enforces the grounding of actions and reasoning interactions and also effectively abstracts
the different capabilities of our systems as simple function calls.

5



Figure 2(a) Prompts for demonstrating abilities Figure 2(b) Sample codeplan for the planner

4.2 Visual Reasoning

We use OFA[14] as our backbone model for visual question answering. OWe use the base variant of
the architecture which has 180M parameters, a ResNet152 vision encoder to obtain image embed-
dings, byte-pair encoding (BPE)[44] tokenization for text, and an encoder-decoder style transformer
with 12 layers and 16 heads. Image and text embeddings are passed into the encoder as input while
the decoder is trained in an autoregressive manner conditioned on encoder output embeddings. We
freeze the encoder and opt to only finetune the autoregressive decoder to retain the rich joint internal
representation of image and text .

To improve OFA’s[14] performance for our tasks, we followed a data generation approach outlined
in CLEVR to produce new randomized scenes in Blender and used ground truth knowledge of
object relations to create question-answer pairs to develop robotic task datasets. To replicate scenes
from the cliport environment, we modified CLEVR to resemble cliport and focused on two specific
scenes: stack-block-pyramid and put-bowl-in-block.

Pre-computed spatial relation scene data was passed through the CLEVR question generation
pipeline which enabled automated structured extraction of answers to the questions. We gener-
ated over 4000 images, with approximately 20-25 questions for each image, resulting in a total of
around 100k question-answer pairs for the training dataset.

Figure 2: This section provides an overview of the question generation process. The questions are
generated using six distinct question templates, which are categorized based on their answer types
into three categories: integer numbers, binary Yes/No, and color. Each template includes parameters
that are replaced by corresponding elements of the same parameter type, namely shape, color, and
relation. These elements are selected randomly and filtered using a rejection sampling heuristic to
ensure the quality of the questions. Once an acceptable question has been identified, the parameter
elements are randomly replaced with a dictionary of synonyms to diversify the question prompts.
Additionally, the prompts enclosed in square brackets are also randomly selected to further enhance
the variety of the question prompts.

6



We finetune the model using the Clevr dataset[15], VQAv2[40] dataset, and a custom block based
task dataset (section 4.2). In total, we train on a dataset of 300K images and about 1.2M questions.
A comparison of performance on Clevr and custom tabletop dataset between our fine-tuned model
and model pre-trained only on the VQAv2[40] dataset is given in table 1. We train the model for
40,000 epochs, with a cosine decay learning rate schedular with warmup, a learning rate of 5e-5,
and the AdamW[45] optimizer.

Figure 3: From left to right; OFA[14] unifies various multi-modal tasks in a seq2seq framework,
(top) a sample from the custom block stacking and pick-place dataset, (bottom) example image
from the Clevr[15] visual reasoning dataset.

4.3 Simulation and Manipulation Policy

We employ the Ravens tabletop simulation environment alongside CLIPort[8]. This combination
enables us to leverage a multi-task pre-trained model that has been trained on our action set A using
imitation learning. By integrating the CLIPort model into our framework, we can receive language-
based goals from the LLM planner. After execution, the CLIPort model transmits the final state
image to the visual reasoning model, facilitating the collection of valuable feedback. The primary
focus of CLIPort is on identifying actions, thus the network’s output consists of predicted pick and
place affordances at each time step.

CLIPort determines these affordances by first attending to a local region to decide where to pick,
then computes a placement location by finding the best match through cross-correlation of deep
visual features. It uses 3, two-stream fully convolutional networks (FCNs) as Figure 4 that combine
the semantic understanding of CLIP[25] with the spatial precision of TransporterNets[27]. The first
FCN takes input γt and outputs affordance map Qpick, which is used to predict pick action Tpick
(Eq 1). The second and third FCN take as input a crop centered around Tpick and the full input γt to
output feature embeddings Φquery and Φkey respectively. These embeddings are used in equation
2 and 3 to obtain place location Tplace. Pixel coordinates to end-effector poses rely on carefully
calibrated extrinsics between the robot’s base frame and the RGB-D camera.

Tpick = argmax(u,v)Qpick((u, v)|γt) (1)

Where Tpick ∈ SE(2) is the end-effector pose for picking action, (u, v) is the pixel location, Qpick

is the pixel-wise prediction output, and γt is the heightmap and language inputs at timestep t.

Qplace(∆τ |γt, Tpick) = Φquery(γt[Tpick]) ∗ Φkey(γt)[∆τ ] (2)

Tplace = argmax∆τQplace(∆τ |γt, Tpick) (3)

Where ∆τ is the potential placement pose, γt[Tpick] is a crop of heightmap centered at Tpick, Φquery

and Φkey are the outputs of the second and third Fully-Convolutional-Networks in the architecture.

7



Figure 4: The two stream architecture of CLIPort

5 Experiment

5.1 Evaluating Visual Reasoning System

To evaluate the performance of our framework, we conduct tests in a tabletop environment. We
modify the Ravens[27] simulation environment for tabletop settings.

CWe showcase the accuracy of OFA[14] on the Clevr[15] and custom block based stack dataset in
table 1. We employ two training approaches: the ”Custom” model, where we fine-tune exclusively
on the custom block dataset and Clevr, and the ”Mixture” model, where we fine-tune on a weighted
combination of the custom block, Clevr, and VQAv2[40] datasets. We use the compositional gener-
alization subset of the CLEVR dataset wherein trainA and valA contain objects of a particular color
and texture while valB contains objects of different colors. The pre-trained model corresponds to
the official weights of the base variant of OFA.The custom Block Stack dataset comprises images
depicting stacked blocks, the Block Bowl dataset includes tabletop scenes involving the placement
of multi-colored blocks in colored bowls, and the Global Table dataset contains questions related
to global orientation and position with respect to the table and other blocks/bowls. The Unseen
challenge dataset consists of variations of the block and bowl datasets, featuring unseen colors and
varying levels of occlusion. We run all models five times, each on 2000 images, and calculate the
average results. Similar to PaLM-E[46], we observe that training the models with a diverse mix-
ture of robotics and general visual-language data yields a significant performance boost compared
to training solely on the specific in-domain data. We also observed that both the pretrained model
and our finetuned model suffer in questions having numerical answers. This is reflected in the rela-
tively poor scores in the bowl and unseen challenge datasets, having a higher number of numerical
questions compared to CLEVR and block stacking datasets.

Models Clevr[15] Block Stack Block Bowl Global Table Unseen VQAV2
ValA ValB

Pretrained 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 52.33%
Custom 69.3% 65.9% 89.44% 56.2% 37.8% 38.3% 26.8%
Mixture 90.9% 88.5% 87.85% 55.9% 49.0% 42.2% 55.23%

Table 1: Comparing the accuracy between OFA[14] pre-trained model and 2 variations of our custom
model finetuned on 2000 images each from Clevr[15], block tasks related dataset, and VQAv2[40]
datasets. The performance of the ”Custom” model, which was finetuned only on CLEVR and block
datasets, shows poor performance on VQAv2 while finetuning on all available datasets has a con-
siderably greater performance on VQAv2 while maintaining performance in robotics related tasks.

8



5.2 Closed-Loop Planning and Execution

We evaluate the effectiveness of our framework, called code-plan with full progress validation, and
compare it against two baselines: code-plan without any feedback and code-plan with success detec-
tion. The first baseline executes the action sequence specified by the planner without receiving any
feedback. The second baseline incorporates success detection, which checks if each action is suc-
cessfully executed before proceeding to the next one. We use two complex high-level instructions:
placing all blocks in bowls of the same color and placing all blocks in bowls of different colors. Our
policy training includes both seen and unseen colors, resulting in comparable overall performance
to the ”put-blocks-in-bowls-unseen-colors” task reported in the CILPort paper. It is worth noting
that the CLIPort policy without oracle termination demonstrates significantly lower performance
compared to the policy with oracle termination, as shown in Table 3.

To highlight the benefits of a visual feedback system, we compare the performance between vali-
dating all previously executed successful control actions and validating only the most recent control
action. Validation refers to using our visual reasoning model to ensure that previously successful ac-
tions remain successful. The environment can be altered by more recent control actions, potentially
undoing the effects of previous actions. For instance, we observed cases where the robot accidentally
tipped over a bowl, causing its block to fall out. By validating all previous actions, the controller
can detect any discrepancies and rectify them before continuing with the original task sequence.
We conduct each experiment 15 times, randomly sampling the number and color of blocks on each
occasion, and measure the number of successful attempts. A task is considered unsuccessful if the
number of retries exceeds 20 or if the visual language model incorrectly predicts task completion.
The results of these experiments are summarized in Table 3

Figure 5: Environment states for the task ”placing blocks into mismatched bowls” using only most
recent action validation. The robot arm fails to place the yellow block in the blue bowl and in
attempting to retry this action, it displaces the red block. Since, it only retries the most recent action,
i.e. placing the yellow block, it never attempts to put the red block back in the green bowl.

Figure 6: Environment states for the task ”placing blocks into mismatched bowls” using all previous
action validation. The robot arm knocks out the gray block out of the brown bowl while executing
the action place the red block in the blue bowl. Due to performing validation checks on all previous
actions, the robot was able to place the gray block back into the brown bowl and continuing on with
placing the red block in the blue bowl.

The performance for the task ”putting blocks in matching bowls” has lower success rate due to the
VLM failing to identify the correct block in a bowl. This was due to the block and bowl color being
so similar that the VLM predicted nothing was present in the bowl. Thus, we conducted the experi-
ment with darker shades of the same color. The success percentage increased significantly as shown
in Table 3. Some of the major failure cases where when the robot arm pushed the bowls/blocks to the
edges of the table or when the robot arm flipped over the bowl. However, one interesting observation

9



Tasks Codeplan Codeplan+
Success

Codeplan+Progress
(Ours)

Put blocks in matching bowls 0.0% 26.67% 33.33%
Put darker blocks in matching bowls 0.0% 33.3% 53.33%
Put blocks in different color bowls 6.67% 40.0% 60.0%

Table 2: Comparing the success rate between CLIPort pre-trained model without oracle termination
and CLIPort pre-trained model with oracle termination using only most recent action validation and
validating over all previous states. For the ”putting blocks in matching bowls task”, we conduct
experiments on two types of blocks: the same color as the bowls and a darker shade of the same
color.

was that the robot arm managed to flip the bowl right side up again and moved the block/bowl closer
to the center when on the edge. This was majorly seen in the CLIPort + full validation experiments.

6 Conclusion

We have introduced a novel solution to tackle the issue of inadequate feedback in existing robot task
and motion planning frameworks. Our approach integrates feedback and reasoning by combining
large language models (LLMs) with a visual reasoning system (VRS), which mimics how humans
process information in their visual cortex. By following a cyclic three-stage process of breaking
tasks down into single-step sub-tasks, executing these sub-tasks while generating feedback, and dy-
namically re-planning when necessary, our method empowers robots to recover swiftly from failures
and successfully accomplish long-term tasks. Through experiments conducted on simulated table-
top manipulation tasks, we have demonstrated that our approach surpasses baseline methods lacking
a feedback system. Our proposed method represents a significant advancement in the development
of more efficient and effective frameworks for robot task and motion planning.

While our proposed method represents a significant advancement, it is important to acknowledge
certain limitations in our work. One limitation is that we utilized a pre-trained CLIPort model
that was not specifically fine-tuned for our tasks, which could have influenced its performance.
To address this, we intend to train and fine-tune our own model using a larger and more diverse
dataset in future research. Another limitation lies in our visual language model (VLM), which may
encounter difficulty in correctly identifying the block within a bowl when their colors are similar.
To mitigate this issue, our future plans include incorporating depth information into the VLM to
enhance its object discrimination capabilities.

We also aspire to implement our method in a more realistic environment, such as the iGibson 2.0
[47] simulator in the BEHAVIOR dataset[48] to showcase the advantages of our approach across
a broader range of scenarios. By implementing the proposed method in a high-fidelity robotics
simulator for complex household tasks, we can gain insights into how the method could be applied
to a physical robot. Once validated, the method could then be adapted to work with an existing
physical robot arm, such as the UR5, paired with an RGB-D camera system. Although we have
not tested our pipeline on a real robot, the authors of CLIPort[8] showcased that CLIPort works
in the real world without any architecture nor training data changes. Further, we train our visual
reasoning model on real world data and synthetic data simultaneously, thus we expect some form
of generalizability. However, to ensure optimal performance in the real world, the models used in
our method would need to be fine-tuned to account for potential errors in real-world inputs and the
execution process.

10



Name Tasks
Sohan Anisetty Responsible for VLM training, evaluation, and integrating CLI-

Port, VLM, and LLM planner. Moved OFA from Fairseq to
HuggingFace, wrote training and evaluation scripts, dataload-
ers, converted weights, experimented with parallelization. Im-
plemented CLIPort and VLM as callable APIs so that the plan
generated by LLM can call these functions. Ran all the different
variations of the experimentation tests. Wrote the VLM sections
of Visual reasoning and Experiment part of the report.

Archana Kutumbaka Responsible for prompt-engineering for LLM planner with
feedback processing abilities. Task set ideation and experiment
design. ViLD integration with the system. Report - Abstract,
Introduction and some parts of Methods

Chunyue Xue Responsible for Ravens simulation environment and CLIPort
task setting up and modifying. Helped with framework inte-
gration. Did experiments with different splits. Wrote the parts
related to CLIPort in Method, and the conclusion.

Bhushan Pawaskar Responsible for Visual QA Model finetuning using CLEVR.
Worked with Blender and CLEVR APIs to generate custom im-
age question answers dataset for training the model on simu-
lated images. Wrote the problem statement formulation, dataset
generation pipeline, and methodology flow in the report.

Table 3: Contribution table

11



References
[1] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and

motion planning through an extensible planner-independent interface layer. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 639–646, 2014. doi:
10.1109/ICRA.2014.6906922.

[2] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. The
International Journal of Robotics Research, 32(9-10):1194–1227, 2013.

[3] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion, manipulation and
task planning. I. J. Robotic Res., 28:104–126, 01 2009. doi:10.1177/0278364908097884.

[4] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-
crete event dynamic systems, 13(1-2):41–77, 2003.

[5] M. M. Botvinick, Y. Niv, and A. G. Barto. Hierarchically organized behavior and its
neural foundations: A reinforcement learning perspective. Cognition, 113(3):262–280,
2009. ISSN 0010-0277. doi:https://doi.org/10.1016/j.cognition.2008.08.011. URL https:

//www.sciencedirect.com/science/article/pii/S0010027708002059. Reinforce-
ment learning and higher cognition.

[6] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models, 2022.
URL https://arxiv.org/abs/2209.11302.

[7] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welin-
der, P. Christiano, J. Leike, and R. Lowe. Training language models to follow instructions with
human feedback, 2022. URL https://arxiv.org/abs/2203.02155.

[8] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. CoRR, abs/2109.12098, 2021. URL https://arxiv.org/abs/2109.12098.

[9] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation, 2022. URL https://arxiv.org/abs/2209.05451.

[10] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu. Coca: Contrastive
captioners are image-text foundation models, 2022. URL https://arxiv.org/abs/2205.

01917.

[11] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Milli-
can, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Mon-
teiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski,
R. Barreira, O. Vinyals, A. Zisserman, and K. Simonyan. Flamingo: a visual language model
for few-shot learning, 2022. URL https://arxiv.org/abs/2204.14198.

[12] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao, H. Hu, X. Huang, B. Li, C. Li,
C. Liu, M. Liu, Z. Liu, Y. Lu, Y. Shi, L. Wang, J. Wang, B. Xiao, Z. Xiao, J. Yang, M. Zeng,
L. Zhou, and P. Zhang. Florence: A new foundation model for computer vision, 2021. URL
https://arxiv.org/abs/2111.11432.

[13] X. Gu, T.-Y. Lin, W. Kuo, and Y. Cui. Open-vocabulary object detection via vision and
language knowledge distillation. 2021. doi:10.48550/ARXIV.2104.13921. URL https:

//arxiv.org/abs/2104.13921.

[14] P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma, C. Zhou, J. Zhou, and H. Yang.
Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning
framework. CoRR, abs/2202.03052, 2022. URL https://arxiv.org/abs/2202.03052.

12

http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1177/0278364908097884
http://dx.doi.org/https://doi.org/10.1016/j.cognition.2008.08.011
https://www.sciencedirect.com/science/article/pii/S0010027708002059
https://www.sciencedirect.com/science/article/pii/S0010027708002059
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2109.12098
https://arxiv.org/abs/2209.05451
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2111.11432
http://dx.doi.org/10.48550/ARXIV.2104.13921
https://arxiv.org/abs/2104.13921
https://arxiv.org/abs/2104.13921
https://arxiv.org/abs/2202.03052


[15] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick. Clevr:
A diagnostic dataset for compositional language and elementary visual reasoning, 2016. URL
https://arxiv.org/abs/1612.06890.

[16] D. McDermott. A temporal logic for reasoning about processes and plans. Cognitive science,
6(2):101–155, 1982.

[17] M. Fox and D. Long. Pddl2. 1: An extension to pddl for expressing temporal planning domains.
Journal of artificial intelligence research, 20:61–124, 2003.

[18] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can, not as i say: Grounding language in robotic affordances,
2022. URL https://arxiv.org/abs/2204.01691.

[19] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. URL https://arxiv.org/abs/2201.

07207.

[20] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policis: Language model programs for embodied control. In arXiv preprint arXiv:2209.07753,
2022.

[21] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models, 2022. URL
https://arxiv.org/abs/2207.05608.

[22] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. 2022. doi:10.48550/ARXIV.
2202.02005. URL https://arxiv.org/abs/2202.02005.

[23] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can, not as i say: Grounding language in robotic affordances,
2022. URL https://arxiv.org/abs/2204.01691.

[24] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer, O. Hénaff, M. M. Botvinick, A. Zisserman, O. Vinyals, and J. Car-
reira. Perceiver io: A general architecture for structured inputs amp; outputs, 2021. URL
https://arxiv.org/abs/2107.14795.

[25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.

[26] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi. Simple but effective: Clip embed-
dings for embodied ai, 2021. URL https://arxiv.org/abs/2111.09888.

[27] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, and J. Lee. Transporter networks: Rearranging the visual world for
robotic manipulation. CoRR, abs/2010.14406, 2020. URL https://arxiv.org/abs/2010.

14406.

13

https://arxiv.org/abs/1612.06890
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2207.05608
http://dx.doi.org/10.48550/ARXIV.2202.02005
http://dx.doi.org/10.48550/ARXIV.2202.02005
https://arxiv.org/abs/2202.02005
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2107.14795
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2111.09888
https://arxiv.org/abs/2010.14406
https://arxiv.org/abs/2010.14406


[28] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic models: Compos-
ing zero-shot multimodal reasoning with language, 2022. URL https://arxiv.org/abs/

2204.00598.

[29] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/

abs/2005.14165.

[30] H. Bao, L. Dong, S. Piao, and F. Wei. Beit: Bert pre-training of image transformers, 2021.
URL https://arxiv.org/abs/2106.08254.

[31] Z. Peng, L. Dong, H. Bao, Q. Ye, and F. Wei. Beit v2: Masked image modeling with vector-
quantized visual tokenizers, 2022. URL https://arxiv.org/abs/2208.06366.

[32] W. Wang, H. Bao, L. Dong, J. Bjorck, Z. Peng, Q. Liu, K. Aggarwal, O. K. Mohammed,
S. Singhal, S. Som, and F. Wei. Image as a foreign language: Beit pretraining for all vision
and vision-language tasks, 2022. URL https://arxiv.org/abs/2208.10442.

[33] H. Bao, W. Wang, L. Dong, Q. Liu, O. K. Mohammed, K. Aggarwal, S. Som, and F. Wei.
Vlmo: Unified vision-language pre-training with mixture-of-modality-experts, 2021. URL
https://arxiv.org/abs/2111.02358.

[34] C. Li, H. Xu, J. Tian, W. Wang, M. Yan, B. Bi, J. Ye, H. Chen, G. Xu, Z. Cao, J. Zhang,
S. Huang, F. Huang, J. Zhou, and L. Si. mplug: Effective and efficient vision-language learning
by cross-modal skip-connections, 2022. URL https://arxiv.org/abs/2205.12005.

[35] F. Liu, G. Emerson, and N. Collier. Visual spatial reasoning. arXiv preprint arXiv:2205.00363,
2022.

[36] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, and
R. Girshick. Inferring and executing programs for visual reasoning, 2017. URL https:

//arxiv.org/abs/1705.03633.

[37] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[38] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations for
sequential manipulation, 2021. URL https://arxiv.org/abs/2109.03891.

[39] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is
worth 16x16 words: Transformers for image recognition at scale, 2020. URL https:

//arxiv.org/abs/2010.11929.

[40] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the V in VQA matter:
Elevating the role of image understanding in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[41] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li,
D. A. Shamma, M. Bernstein, and L. Fei-Fei. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. 2016. URL https://arxiv.org/abs/1602.

07332.

14

https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2204.00598
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2208.06366
https://arxiv.org/abs/2208.10442
https://arxiv.org/abs/2111.02358
https://arxiv.org/abs/2205.12005
https://arxiv.org/abs/1705.03633
https://arxiv.org/abs/1705.03633
https://arxiv.org/abs/2109.03891
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332


[42] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto.
Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

[43] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su. Llm-planner: Few-
shot grounded planning for embodied agents with large language models, 2022. URL https:

//arxiv.org/abs/2212.04088.

[44] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words with subword
units, 2016.

[45] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[46] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e: An
embodied multimodal language model, 2023.

[47] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gok-
men, G. Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese.
igibson 2.0: Object-centric simulation for robot learning of everyday household tasks. In
A. Faust, D. Hsu, and G. Neumann, editors, Proceedings of the 5th Conference on Robot
Learning, volume 164 of Proceedings of Machine Learning Research, pages 455–465. PMLR,
08–11 Nov 2022. URL https://proceedings.mlr.press/v164/li22b.html.

[48] S. Srivastava, C. Li, M. Lingelbach, R. Martı́n-Martı́n, F. Xia, K. Vainio, Z. Lian, C. Gokmen,
S. Buch, C. K. Liu, S. Savarese, H. Gweon, J. Wu, and L. Fei-Fei. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments, 2021. URL
https://arxiv.org/abs/2108.03332.

15

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2212.04088
https://arxiv.org/abs/2212.04088
https://proceedings.mlr.press/v164/li22b.html
https://arxiv.org/abs/2108.03332


7 Appendix

7.1 Problem definition

Action ak ∈ A : A is the set of all possible actions the agent can take which is equivalent to the
skill repertoire an agent possesses. Each action ak can for our table top manipulation problem be
formulated as a simple pick and place action and represented as a tuple of end-effector poses for
pick and place: ak = (Tpick, Tplace).

State sk ∈ S : S is the set of all possible environment states. s0 is the start state and sn is
the goal state. The information contained in a state is not directly accessible to the agent. The agent
can only access the observation ok of a state sk at any given step k

Observation ok ∈ O : O is the set of all possible observations of the environment state.
These observations are raw RGB camera images of the scene. ok ∈ RH×W×C . We assume that the
agent is able to access the raw camera data without any noise or interference in the process.

System here refers to the dynamic model of the system given by f . This function deter-
mines what change will take place in the system state sk at any given step when an action ak is
taken by the agent. f(sk, ak) = sk+1

Figure 7: A high level overview of all the system interactions made by the agent. At every kth step,
the agent receives input of observations ok. Based on the original natural language instruction L,
the agent outputs an action ak for that step. This continues for a total of n steps till the agent reaches
the goal state sn

Codeplan ck :
Chain of tasks for a structured plan for successfully executing the long-horizon task
Example: putFirstOnSecond(yellow block, yellow bowl)

Instruction ik :
Conversion of the codeplan tasks into a natural language instruction for the low level actor
Example: Put yellow block in the yellow bowl.

Query qk :

16



A natural language question that validates the success of the previously passed instruction.
Example: “Is the yellow block in the yellow bowl?”

Response Feedback rk :
Facilitates verification of success from the visual feedback model based on a given query.
Example: A list of objects in the scene [Red cube, Green bowl, Blue cube]; A boolean success
response to the query [True] [False]

7.2 Example Data

Figure 8: Example images from our custom dataset

7.3 Complete code plans

7.4 More examples of putting blocks in mismatched bowls

17



Figure 9: An example generated code plan from an input prompt: ”Write code to stack all blocks on
red block” example code snippet. Here, sensor is a call to the VLM model, and gripper/end effector
are calls to Cliport[8]. The prompts are shown in Fig 2.

18



Figure 10: More examples of complete validation feedback mechanism in play recovering from
unfavourable situations (Column 3).

19


	Introduction
	Related Work
	Task Planning with Language Models
	Language-Conditioned Manipulation
	Visual Reasoning

	Problem Statement
	Problem Definition

	Method
	Generating codeplans
	Visual Reasoning
	Simulation and Manipulation Policy

	Experiment
	Evaluating Visual Reasoning System
	Closed-Loop Planning and Execution

	Conclusion
	Appendix
	Problem definition
	Example Data
	Complete code plans
	More examples of putting blocks in mismatched bowls


