
Visual Inertial Odometry based State Estimation for
Autorally / Racecar

Report for Capstone Project - AE8900

Bhushan Pawaskar
School of Aerospace Engineering

Georgia Institute of Technology
Atlanta, United States

bpawaskar3@gatech.edu

Abstract—This project focuses on the task of localization for
the autorally and racecar testbed environments using visual cam-
era data. Traditional methods, like Global Navigation Satellite
Systems (GNSS) have limitations, such as signal interference
whereas IMU based estimation methods suffer from lots of noise
in data collected at source. The project proposes a Visual-Inertial
Odometry (VIO) System that combines the information from rich
RGB camera data with IMU data, aiming to enhance localization
accuracy and address challenges posed by diverse environmental
conditions. This integrated approach seeks to provide a robust
solution for autonomous navigation and exploration without
relying on external GPS data.

I. INTRODUCTION

The autonomous vehicle industry has seen a lot of growth
in recent years, with rapid advancements in robotics tech-
nologies. Self-driving technology has the potential to not
only revolutionize the transportation industry but can also
make a significant impact in agriculture, search and rescue
operations. However, for a vehicle to attain fully automated
level 5 autonomous driving status, there are still many issues
that need to be addressed. Such a vehicle should be able to
autonomously operate in all situations and should be robust
to all types of conditions. In order to achieve this kind of
robustness for an autonomous robot, the challenges are multi-
fold and vary across various sub-tasks from perception to
localization to mapping.

Estimating its current state in the environment is one such
task which is crucial for a robot to navigate its surrounding
regions. This process of estimating the ’local state’ is termed
as localization. Even when a map of the environment is
available, localization is essential for as it helps incorporate
a closed-loop feedback of the changes in the robot’s local
environment. Mapping and planning allows a robot to build a
map of its surroundings and then plan efficient paths as per
certain objectives. Without accurate localization however, a
robot cannot determine its position relative to other objects in
the environment. Thus, it would not be able to plan a trajectory
without any information about its location on the map. It is
especially important for autonomous exploration of unknown
environments.

Localization is a challenging problem and is typically
tackled using measurements from a wide range of sensor
suites from wheel-speed sensors, inertial measurements units
(IMU) to cameras and also global navigation satellite systems
(GNSS). Even though IMU based inertial odometry methods
can provide decent estimates of acceleration and velocities,
their accuracy in determining position is limited. Moreover,
the errors for these systems can accumulate over time which
is undesirable and needs correction. Methods based on GNSS
can have very high accuracy, especially with the rapid devel-
opment of Global Positioning System (GPS) technologies like
Real-time Kinematic (RTK). These have allowed for position
estimates with a decimeter or centimeter level of accuracy.
However, GNSS based methods suffer from signal interference
in noisy signal environments. Also, they suffer from signal
blockage in indoor or other GNSS denied areas which makes
them unreliable in such environments.

Fig. 1. Autorally testbed

Vision based navigation systems on the other hand approach
this problem by using visual sensors like Light Detection and
Ranging (LIDAR) and cameras. These systems process raw
point cloud or image data to extract the robot’s positional
and rotational information with respect to its surroundings.
Visual odometry (VO) is one such method that tracks fea-
tures between camera images at different time instants to
estimate the position and translation of the robot between
such instances. Raw image data obtained from a camera can
contain lots of meaningful data like shape, color or texture
to aid in the estimation of motion parameters. However,
in low light conditions or harsh environments like in rainy
weather for example, camera data becomes less useful leading
to a degradation of performance of VO systems. But, these

conditions do not affect IMU measurements. Thus, we can
combine VO systems with inertial odometry methods and
address the limitations of each of these by supplementing them
with each other’s data. Such a system is termed as Visual-
Inertial Odometry (VIO) System.

II. LITERATURE REVIEW

A. Structure From Motion (SFM)

The problem of recovering relative camera poses and three-
dimensional (3-D) structure from a set of camera images
is known as Structure from Motion (SFM). Much of the
initial work related to VIO systems can be attributed to the
developments in SFM algorithms in the 1980s. [1] [2] [3].
SFM deals with the challenge of reconstructing both the 3D
layout of a scene and the positions of cameras capturing
it, using a sequence of images, which can be in any order.
This process often involves an optimization problem of the
obtained scene and camera information using a comprehensive
adjustment (bundle adjustment) that becomes slower as more
images are used.

In 1981, Longuet-Higgins et al [1] was one of the initial
works that focused on extracting 3d information from 2d
images. Later, Baker et al [2] tried to extract depth information
by focusing on the integration of edge and intensity cues
for improved accuracy and robustness. While, Arnold et al
[3] attempted to do it by matching features like extended
edges and also automated the process. Anandan et al [4]
introduced a computational framework for measuring visual
motion, reflecting a growing emphasis on motion estimation
as an integral part of SFM. Harris et al [5] explored methods
for integrating motion information from image sequences to
improve the accuracy and robustness of 3D reconstruction.
This shift enabled the reconstruction of dynamic environments
by accounting for motion cues alongside depth information.
This type of analysis falls into the domain of Visual Odometry
(VO): determining the ego-motion of an agent by analyzing
the input from one or more cameras that are connected to it.

B. Visual Odometry (VO)

Visual Odometry (VO) can be seen as a specific subset of
SFM. VO concentrates on sequential data: it aims to estimate
the camera’s 3D movement in real-time, as new frames of an
image sequence arrive. VO doesn’t handle the complete scene
reconstruction like SFM does; instead, it focuses on tracking
the camera’s motion as it navigates through the environment.
The local estimation of this motion can be improved using
techniques similar to bundle adjustment to enhance accuracy.

Broadly speaking, VO can be classified into either appear-
ance based or feature based systems. They can also be broken
down into stereo VO and monocular VO. While stereo VO
offers depth estimation, stereo VO reduces to a monocular
VO when the distance to the scene becomes much greater
than the distance between the cameras. Thus, both of these
lines of research have their own merits.

1) Stereo VO:
Much of development for stereo VO systems was driven

Fig. 2. Visual Odometry optimization problem

by NASA’s Mars exploration [6] [7] [8], focused on
equipping planetary rovers to estimate 6-DoF motion
in challenging terrains. Stereo cameras were often used
with corner detection algorithms; Matthies et al [7] [8]
built upon Moravec’s [6] corner detection, using binocu-
lar systems and incorporating error covariance matrices
for motion estimation, achieving improved trajectory
recovery. Olson et al [9], [10] introduced an absolute
orientation sensor and improved corner detection, sig-
nificantly reducing accumulation errors in camera ego-
motion estimates. The inclusion of an absolute orienta-
tion sensor yielded a lower position error of for longer
paths. Most of these earlier works used triangulation of
tracked features across frames in 3d space to estimate
motion. However, the term ’Visual Odometry’ came to
be coined much later in 2004 by Nister [11]. This paper
detected features in frames independently and matched
them later. This allowed them to address challenges like
handling occlusions, outliers, and camera rotations, and
incorporate robust statistical techniques like RANSAC
[12] to enhance the accuracy and reliability of the
motion estimation process.

2) Monocular VO:
Since there is no 3d information, all the estimations
in mono VO must be done on the 2d bearing data.
These methods track either features over a set of frames
or use intensity information (appearance based) in the
sub-regions of the image. Nister et al [11] gave one
of the first real time implementations of VO using a
single camera. It used a 5 point minimal solver [17]
with RANSAC [12]. This method became popular and
was then adopted to omni-directional cameras as well
[16] [13]. As for the appearance based methods, Goecke
et al [14] employed the Fourier-Mellin transform for
registering ground plane images captured from a car.
Milford and Wyeth [15] extracted rotational and trans-

lational velocity information from a single car-mounted
camera. These were however, not robust to occlusions.

VO works by incrementally estimating postion after each
frame. This causes errors to accumulate over time and causes
the results to drift. This can be reduced by locally optimizing
over the last k frames. This approach is known as sliding
window bundle adjustment. [20] [21]. Apart from this if we
use additional measurements from sensors like GPS or IMU,
the drift can be reduced further. Thus, making Visual Inertial
Odometry (VIO) much more superior in comparison.

C. Visual Inertial Odometry (VIO)

IMU provides highly accurate data at a high rate. But the
data is often prone to lots of noise. As a result, long term
estimation of state by integrating IMU measurements leads to
a lot of drifting. Combining it with VO however, overcomes
this limitation thus giving a reliable system for localization.
VIO systems have come a long way since Tardif et al [24].

Apart from the classifications of VO subsystems in VIO,
these can be classified in multiple ways based on how loosely
the sensor data is coupled from loosely coupled [22] [23]
where each sensor individually estimates the state to being
tightly coupled using a Multi State constraint Kalman Fliter
(MSCKF) [25]. In coupled systems, a filter based: two step
approach (IMU estimation, then vision estimator) could be
taken using Extended Kalman Filters (EKF) or MSCKF [25].
Or an optimization based approach [39] [38] which solves the
non-linear least squares problem over the imu and camera data.

III. METHODOLOGY

A. Hardware Calibration

Fig. 3. Autorally Hardware: Stereo Camera & Inertial Measurement Unit

In order to perform state estimation using hardware read-
ings, the theoretical perfection of simulated models must
account for the real-world imperfections inherent in physi-
cal hardware. This necessitates calibration, a critical process
to rectify discrepancies between idealized assumptions and
the actual hardware. For instance, camera models have re-
projection and distortion errors, requiring adjustment of intrin-
sic parameters for accurate representation. Similarly, Inertial
Measurement Units (IMUs) contend with noise, necessitat-
ing calibration to mitigate constant bias and additive white
noise for gyroscope and accelerometer readings. Further, the
functionality of both camera and IMU demands estimation

of their relative transformations, Thus, hardware calibration is
important to the ensure accuracy of the state estimation system.

1) Camera Calibration:

Fig. 4. A: Radial, Tangential distortions & B: Pinhole Camera Model

VO can be done with perspective, omni-directional as
well as spherical cameras. However, since Autorally uses
perspective based cameras so we use a pinholde camera
model with radial and tangential distortions incorporated
in it. Pinhole camera model is the most commonly
used model for perspective cameras. It describes how
a 3D scene is projected onto a 2D image plane using a
simplified camera representation.
In the pinhole camera model: [18] [19]

a) Camera Center (or Optical Center): This is the
point in space where all the rays of light entering
the camera converge. It is typically denoted as the
origin of the camera’s coordinate system.

b) Image Plane: This is a 2D plane situated perpen-
dicular to the camera’s optical axis and placed at
a certain distance from the camera center.

c) Principal Point: The point where the optical axis
intersects the image plane. It’s often denoted by
the coordinates (u0, v0), representing the center of
the image.

d) Focal Length (f): The distance between the camera
center and the image plane, along the optical axis.
It defines the magnification of the scene.

The images co-ordinates u, v can be obtained by the
equation shown below. The 4 parameters in the projec-
tion matrix αu, αv , u0, v0 are called camera intrinsic
parameters and differ for each camera. Every camera
must be calibrated to find these projection parameters.
Apart from these, if the camera field of view is high, then
the camera also suffers from distortions. These could be
either radial or tangential distortions. Distortion effects
need to be corrected for and can be modelled using a
second (or higher) order polynomial.

Given,
coordinates: X = [x, y, z]
projection: P = [u, v]
focal lengths: αu, αv

projection center: u0, v0

KX = λP

αu 0 u0

0 αv v0
0 0 1

xy
z

 = λ

uv
1

The calibration step is done using a checkerboard or an
Aruco markers as target. Capturing the target board from
multiple angles gives us an estimate for what the actual
projection matrix and distortion coefficients are.

Fig. 5. Calibration targets: Aruco Markers, Checkerboard

2) IMU Calibration:

The IMU noise must be accounted for during the cal-
ibration stage. This can be either obtained from the
manufacturer’s data-sheet or it can be calibrated using
other tools which use the Allan-Variance method [36]
The IMU measurement tool used was Allan-Variance
ROS and it estimates two types of sensor errors: n, an
additive noise term that fluctuates very rapidly (”white
noise”), and b, a slowly varying sensor bias. The angular
rate measurement ω̃ (for one single axis of the gyro, in
this case) is therefore written as:

ω̃(t) = ω(t) + b(t) + n(t)

The same model is independently used to model all
three sensor axes as well as to model the accelerometer
measurement errors (on each axis independently) [36],
[37].
In order to do this, the platform must be kept stationary
in one place for 3-4 hours - long enough to record
stationary IMU noise. The tool uses this data to compute
the Angle Random Walk (ARW), Bias Instability and
Gyro Random Walk for the gyroscope as well as Ve-
locity Random Walk (VRW), Bias Instability and Accel
Random Walk for the accelerometer.

B. Problem Definition

Consider a discretized system, with n time steps from
start step t1 to current step tn. We consider the problem
of estimating the camera trajectory from step t1 to step tn
taken by the camera. Let the trajectory of the camera be
demonstrated by n different camera poses at each time step
such that the camera pose at time step tk is Ck.

Trajectory of camera: τ ≡ [C1, C2,, Cn]
At every step tk, new images i(left)k and i(right)k are

obtained. Let the IMU readings from the start of step tk−1 to
step tk be denoted by vk.

Let Rk,k−1 be the rotation matrix from step k − 1 to step
k and tk,k−1 be the translation matrix from step k− 1 to step
k. Let Tk,k−1 be the transformation matrix from camera pose
Ck−1 to Ck

Given: vk, i(left)k, i(right)k, i(left)k−1, i(right)k−1

Our problem reduces down to finding a transformation
matrix from step k−1 to step k, Tk,k−1 ∈ R4 of the following
form: [

Rk,k−1 tk,k−1

0 1

]
Finding Tk,k−1 for all time steps from t1 to tn will lead

to generation of all poses C1 to Cn and thus in turn τ ≡
[C1, C2,, Cn]

C. VIO frameworks

The general workflow of a VIO system is as shown here.
Common features between two frames are detected using fea-
ture detectors like ORB, SIFT, KLT. Then using an algorithm
like RANSAC, outlier false matches are rejected. Based on
the matched features, optical flow estimation from the frames
is done. Relative poses between the two frames is computed
from this data.

Fig. 6. VO workflow for motion estimation

Based on criteria like active library support, availability of
ROS wrappers, and stereo camera compatibility, four different
VIO packages were chosen to be tested. The plan involved
benchmarking these selected packages to determine their per-
formance and identify the most suitable one for the autorally
system.

1) Orbslam3 [41]
2) OpenVINS [42]
3) ROVIOLI [43]
4) XIVO [44]
These can be divided into two categories primarily based on

how they perform the optimization step. This also affects their
computation time significantly. These are Optimization-based
and Filter-based approaches.

Fig. 7. Optimization vs Filter based approaches

1) Filter based: These methods employ a sequential ap-
proach to updating the estimate, first utilizing inertial in-
formation, followed by visual data, and then incorporat-
ing inertial measurements again. The Extended Kalman
Filter is employed to iteratively refine the estimate based
on the previous estimate and new measurements. Rovioli
and Xivo followed this approach.

2) Optimization-based: This approach involves optimiz-
ing the estimate by jointly considering information
from both IMU and camera data, seeking to minimize
the overall least squares error of the estimate through
nonlinear optimization. This makes the approach more
accurate at the cost of being computationally expensive.
Orbslam3 and OpenVins followed this approach

IV. RESULTS

A. Hardware Calibration

1) Camera Calibration:

Kalibr was vital for estimating the projection as well
as distortion coefficients. Kalibr was also used again
to compute relative transformations between the stereo
cameras and IMU.

Fig. 8. Undistorted Checkerboard pattern

For the camera intrinsics, the re-projection error with
the estimated parameters was within 1 pixel. The re-
projection errors are as shown here.

Fig. 9. Camera re-projection errors after calibration

2) IMU Calibration:

Allan Variance ROS gave a reasonable estimate for
IMU intrinsics. By plotting the IMU noise data on a
logarithmic scale, noise parameters can be estimated
using Allan Variance method. The graph for gyro and
accelerometer was as follows:

Fig. 10. Allan Variance deviations on logarithmic time scale

The values estimated were off from the values in the
manufacturer data-sheet. Thus, it was worthwhile to
perform the calibration to get more accurate estimate
of the white noise.

B. Preliminary Results

The initial results were tested on two bag files of track run
to get a visual estimate of how well the estimates were out of
the box for the four packages.

Unfortunately, the results were disappointing with the es-
timates only being accurate for 1-2 packages and even they
were only able to estimate it for the initial 10 seconds after
which the results looked random.

Fig. 11. Intermediate results: OpenVins and Rovioli

The best results out of the 4 packages were from Rovioli
and Openvins. They managed to estimate the general shape of
the initial trajectory. Xivo was completely inaccurate with the
estimate jumping all over the place. Orbslam3 on the other
hand failed to provide any estimate as it was not able to find
more than 10 matching features across two consecutive frames.

The two main probable reasons behind bad estimates could
be summarized as follows:

1) Lighting variations: Many of these packages were
variant to environment lighting conditions and thus
needed some kind of pre-filtering in order to track the
features well. The variation in exposure caused certain
areas of the image to clip (example: when the camera
was directly facing the sun causing a sudden change in

Fig. 12. Features tracked: Left - Xivo, Right - Orbslam3

exposure) where the feature trackers were not able to
detect any features.

2) Noisy Compressed Data The vehicle movement was
extremely erratic. This coupled with image compression
led to all information being lost from the grass texture
underneath. These points were still being tracked which
could have been giving bad results. On probing further, it
was found that the points on the chassis of the vehicle
were being tracked. This was bound to give a wrong
estimate.

C. Refining Results

1) Image Preprocessing This step involved tweaking image
exposure, contrast before passing the images into the
estimator. Some of these packages had preprocessing
built in which made it a lot easier. Brightness, Con-
trast, Sharpness, applying grayscale filters were some of
preprocessing techniques used. These did not improve
the results much. Histogram equalization methods like
CLAHE were also used which did show noticeable
improvement in result consistency.

2) Masking Vehicle Chassis As some features on the vehi-

Fig. 13. Left and Right Camera Image masks

cle body were being tracked, an alpha mask was used
to exclude such parts from the feature tracker. It was
expected that this would make the tracking significantly
better. On the contrary, this made the results even worse.
As a result, it was decided not to use image masks.

3) Tuning Algorithm Parameters Not all packages, gave
complete control over their internal parameters, but some
like OpenVins did allow for variation over a number
of factors. This step involved varying the values for
parameters like feature tracking parameters like number
of features to track, what kind of feature tracker to
use (with their own parameters), whether to use outlier
rejection like RANSAC, what thresholds to use and so
on. Along with these, there were other numerical solver

parameters, like what solver to use for integration, or
whether to use first-estimate jacobians. Testing every
possible combination was intractable, so this step had
lots of manual iterations adjusting parameters in a first
pass to see what improved the estimate. Then, revisiting
the parameters in a second pass and refining them once
all parameters were adjust initially.

D. Autorally Results

After a lot of parameter tuning, the results were resem-
bling the ground truth trajectory. Although they were not too
promising, as the estimate obtained couldn’t really be used as
a robust state estimator.

Fig. 14. OpenVins Estimate 1

Fig. 15. OpenVins Estimate 2

The best results were obtained with OpenVins. The rest
of the packages failed to give decent results. Even with
OpenVins, the errors kept on accumulating and eventually
after a long time the estimates starts to diverge. Although this
is an inherent flaw with VIO based estimation, the error is
considerably high that the estimation cannot be used reliably
in real time.

Here are some insights on why the results were bad:

1) The data was extremely noisy: due to erratic movements
over grass/soil + compression artifacts (bag files have
compressed images). This makes it super difficult to
have reliable tracking points.

2) Robust descriptor-based trackers like ORB, Fast were
performing worse than using something basic KLT
tracker. Infact, the results shown here are with KLT
tracker. This is likely related to the fact that large
intensity-based changes were a more reliable indicator
of motion rather than finding structure based features in
the noisy images.

3) Using image masking and histograms for tuning the im-
ages actually worsened the performance. This was possi-
bly because an excessive number of features were being
tracked due to reduction in the space being tracked,
but varying the number of trackers/state estimators after
masking, did not improve the estimate.

E. Race-car Results

In order to make the problem slightly easier, we decided
to switch to the MIT race-car platform which could be used
indoors. Tracking features indoors was relatively easier due to
consistent lighting conditions and easy to detect high contrast
features present in indoor environments.

Fig. 16. MIT Racecar Platform

The race-car platform had similar hardware, a stereo camera
pair and an IMU which made it easier to repeat the familiar
procedure on the newer hardware. The only major caveat was
this was based on the ROS2 Eloquent platform so finding
compatible VIO frameworks was a challenge.

Fig. 17. Indoor hallway state estimate results

Hardware Calibration was done similarly as previously men-
tioned for Autorally. Luckily, OpenVins which was already
giving decent estimates had a ROS2 wrapper. This made for
an easy transition to the race-car platform. Some initial bag
files were recorded in the hallway which showed promising
results. Although, it should be noted that there was no way to
verify these results with the ground truth as GPS connectivity
is poor indoors.

F. IFL Testing

Fig. 18. High Contrast features in IFL

To validate the robustness of these results, subsequent
testing was done in Georgia Tech’s Indoor Flight Laboratory
(IFL). It is an open indoor space with its own independent
Vicon motion-capture system altogether totaling 56 cameras.
This helped with real time validation of the algorithm. The
algorithm was running on a single thread with minimal pro-
cessing overhead.

Since the motion-capture was not available, it was decided
that the results would be validated by making the car follow
fixed known trajectories to see how well the estimation al-
gorithm performed. Two oval tracks and a circular track was
made in the IFL space. The following loops were performed
on these in that order:

1) Loop 1: 3 rounds
2) Loop 2: 2 rounds
3) Loop 3: 5 rounds
It should be noted here that loops 1 & 2 had some inconsis-

tencies in navigating due to manual control of the vehicle. The
overall duration of this test was over 4 minutes. The algorithm
did pretty well and the accumulated error was pretty minimal.
Overall, the results were consistent with themselves.

Fig. 19. IFL State Estimation for the 3 loops

V. CONCLUSION

It was shown that using OpenVins, robust state estimation
can be done in an indoor environment for Autorally and Race-
car testbed. This can be used where GNSS based localization
is not available or LIDAR based estimates are infeasible.

Qunatitative validation of the system is yet to be done.
This can be done using a motion capture system or by
simultaneously running a LIDAR based SLAM. The VIO
system can be improved further in future using better more
robust feature descriptors rather than relying on KLT based
detection. Loop closures can also help improve accuracy over
long time durations significantly.

REFERENCES

[1] H. Longuet-Higgins, ”A computer algorithm for reconstructing a scene
from two projections,” Nature, vol. 293, pp. 133-135, 1981. [Online].
Available: https://doi.org/10.1038/293133a0

[2] H. Baker and T. Binford, ”Depth from edge and intensity based
stereo,” in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1981, pp. 631-636.

[3] R. D. Arnold, ”Automated stereo perception,” Artificial Intelligence
Laboratory, Stanford University, Tech. Rep. AIM-351, 1983.

[4] P. Anandan, ”A computational framework and an algorithm for the
measurement of visual motion,” International Journal of Computer
Vision, vol. 2, no. 3, pp. 283-310, 1989.

[5] C. Harris and J. Pike, ”3D positional integration from image sequences,”
in Proceedings of the Alvey Vision Conference, 1988, pp. 87-90.

[6] H. Moravec, ”Obstacle avoidance and navigation in the real world by
a seeing robot rover,” Ph.D. dissertation, Stanford University, Stanford,
CA, 1980.

[7] L. Matthies and S. Shafer, ”Error modeling in stereo navigation,” IEEE
Journal of Robotics and Automation, vol. 3, no. 3, pp. 239-248, 1987.

[8] L. Matthies, ”Dynamic stereo vision,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA, 1989.

[9] C. Olson, L. Matthies, M. Schoppers, and M. W. Maimone, ”Robust
stereo ego-motion for long distance navigation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2000, pp. 453-458.

[10] C. Olson, L. Matthies, M. Schoppers, and M. Maimone, ”Rover naviga-
tion using stereo ego-motion,” Robotics and Autonomous Systems, vol.
43, no. 4, pp. 215-229, 2003.

[11] D. Nister, O. Naroditsky, and J. Bergen, ”Visual odometry,” in Proceed-
ings of the International Conference on Computer Vision and Pattern
Recognition (CVPR), 2004, pp. 652-659.

[12] M. A. Fischler and R. C. Bolles, ”Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381-395, 1981.

[13] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis, ”Monocular visual odometry
in urban environments using an omnidirectional camera,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2008, pp. 2531-2538.

[14] R. Goecke, A. Asthana, N. Pettersson, and L. Petersson, ”Visual vehicle
egomotion estimation using the Fourier-Mellin transform,” in Proceed-
ings of the IEEE Intelligent Vehicles Symposium, 2007, pp. 450-455.

[15] M. J. Milford and G. Wyeth, ”Single camera vision-only SLAM on
a suburban road network,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2008, pp. 3684-3689.

[16] P. I. Corke, D. Strelow, and S. Singh, ”Omnidirectional visual odometry
for a planetary rover,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2005, pp. 4007-
4012.

[17] D. Nister, ”An efficient solution to the five-point relative pose problem,”
in Proceedings of the International Conference on Computer Vision and
Pattern Recognition (CVPR), 2003, pp. 195-202.

[18] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[19] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision,
from Images to Models. Springer-Verlag, Berlin, 2003.

[20] F. Fraundorfer, D. Scaramuzza, and M. Pollefeys, ”A constricted bundle
adjustment parameterization for relative scale estimation in visual odom-
etry,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2010, pp. 1899-1904.

[21] N. Sunderhauf, K. Konolige, S. Lacroix, and P. Protzel, ”Visual odome-
try using sparse bundle adjustment on an autonomous outdoor vehicle,”
in Tagungsband Autonome Mobile Systeme, Reihe Informatik aktuell,
P. Levi et al., Eds. Springer-Verlag, Berlin, 2005, pp. 157-163.

[22] L. HaoChih and D. Francois, ”Loosely coupled stereo inertial odometry
on low-cost system,” Tech. Rep., 2017.

[23] D. Scaramuzza et al., ”Vision-controlled micro flying robots: From
system design to autonomous navigation and mapping in GPS-denied
environments,” IEEE Robotics and Automation Magazine, vol. 21, no.
3, pp. 26-40, Sep. 2014.

[24] J.-P. Tardif, M. G. M. Laverne, A. Kelly, and M. Laverne, ”A new
approach to vision-aided inertial navigation,” in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010, pp. 4161-4168.

[25] A. I. Mourikis and S. I. Roumeliotis, ”A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Apr.
2007, pp. 3565-3572.

[26] B. Goldfain et al., ”AutoRally: An Open Platform for Aggressive
Autonomous Driving,” IEEE Control Systems Magazine, vol. 39, no.
1, pp. 26-55, Feb. 2019.

[27] C. Campos et al., ”ORB-SLAM3: An Accurate Open-Source Library
for Visual, Visual–Inertial, and Multimap SLAM,” IEEE Transactions
on Robotics, vol. 37, no. 6, pp. 1874-1890, Dec. 2021.

[28] X. Fei, A. Wong, and S. Soatto, ”Geo-supervised visual depth predic-
tion,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1661-
1668, 2019.

[29] P. Geneva et al., ”OpenVINS: A Research Platform for Visual-Inertial
Estimation,” in Proceedings of the 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 4666-4672.

[30] T. Qin and S. Shen, ”Online Temporal Calibration for Monocular Visual-
Inertial Systems,” in Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3662-
3669.

[31] M. Bloesch et al., ”Iterated Extended Kalman Filter Based Visual-Inertial
Odometry Using Direct Photometric Feedback,” The International Jour-
nal of Robotics Research, vol. 36, no. 10, pp. 1053-1072, 2017.

[32] S. Sumikura, M. Shibuya, and K. Sakurada, ”OpenVSLAM: A Versatile
Visual SLAM Framework,” in Proceedings of the 27th ACM Interna-
tional Conference on Multimedia (MM ’19), 2019, pp. 2292-2295.

[33] M. Burri et al., ”The EuRoC micro aerial vehicle datasets,” The
International Journal of Robotics Research, 2016. [Online]. Available:
http://ijr.sagepub.com/content/early/2016/01/21/0278364915620033.abstract

[34] J. Maye, P. Furgale, and R. Siegwart, ”Self-supervised Calibration for
Robotic Systems,” in Proceedings of the IEEE Intelligent Vehicles
Symposium (IVS), 2013.

[35] L. Oth et al., ”Rolling Shutter Camera Calibration,” in Proceedings of
the IEEE Computer Vision and Pattern Recognition (CVPR), 2013.

[36] ”IEEE Standard Specification Format Guide and Test Procedure for
Single-Axis Interferometric Fiber Optic Gyros,” IEEE Std 952-1997,
1998. [Online].

[37] N. Trawny and S. I. Roumeliotis, ”Indirect Kalman Filter for 3D Attitude
Estimation,” MARS Lab Tech. Report Nr. 2005-002, Rev. 57, 2005.

[38] S. Leutenegger et al., ”Keyframe-based visual–inertial odometry using
nonlinear optimization,” International Journal of Robotics Research, vol.
34, no. 3, pp. 314-334, Mar. 2015.

[39] C. Forster et al., ”On-manifold preintegration for real-time visual-inertial
odometry,” IEEE Transactions on Robotics, vol. 33, no. 1, pp. 1-21, Feb.
2017.

[40] Y. Alkendi, L. Seneviratne and Y. Zweiri, ”State of the Art in Vision-
Based Localization Techniques for Autonomous Navigation Systems,”
in IEEE Access, vol. 9, pp. 76847-76874, 2021, doi: 10.1109/AC-
CESS.2021.3082778.

[41] [ORB-SLAM3] Carlos Campos, Richard Elvira, Juan J. Gómez
Rodrı́guez, José M. M. Montiel and Juan D. Tardós, ORB-SLAM3: An
Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map
SLAM, IEEE Transactions on Robotics 37(6):1874-1890, Dec. 2021.

[42] [Geneva et al., 2020] Patrick Geneva, Kevin Eckenhoff, Woosik Lee,
Yulin Yang, and Guoquan Huang, ”OpenVINS: A Research Platform
for Visual-Inertial Estimation,” in Proc. of the IEEE International
Conference on Robotics and Automation, Paris, France, 2020.

[43] [Bloesch et al., 2015] Michael Bloesch, Sammy Omari, Marco Hutter,
and Roland Siegwart, ”Robust Visual Inertial Odometry Using a Direct
EKF-Based Approach,” Conference Paper, 2015.

[44] [Fei and Soatto, 2019] Xiaohan Fei and Stefano Soatto, ”XIVO: An
Open-Source Software for Visual-Inertial Odometry,” 2019.

[45] A. I. Mourikis and S. I. Roumeliotis, ”A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” Proceedings 2007 IEEE
International Conference on Robotics and Automation, Rome, Italy,
2007, pp. 3565-3572, doi: 10.1109/ROBOT.2007.364024.

[46] [Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós.
ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015
IEEE Transactions on Robotics Best Paper Award)

