
Report by Bhushan as a summary of findings in Fall 22 semester for Agile Systems Lab under the
guidance of Prof. Sponberg and Usama.

Objective:

Determination of causal latent factors in a pretrained Recurrent Neural

Network (RNN) using the Generative Causal Explanations (GCE)

framework.

Background:

A recurrent neural network was already trained to successfully predict

muscle spikes and spike timings in hawkmoth flight experiments. In a

series of experiments, moths were tethered and made to respond to a

stimulus of a motion of a flower oscillating at certain frequencies. EMG

muscle spikes were recorded directly from their muscles to use as training

data. The flower motion was simulated and an Event Polarity Matrix

sequence was generated from the simulated frames. This sequence was

passed through an autoencoder to be fed into the RNN. The trained RNN

outputs muscle spikes and spike timings for 44 different muscles.

The GCE framework was referenced from the paper

O’Shaughnessy et al. It helps bias the encoded latent factors to influence

the output of a specific classifier. The original GCE framework has been

tested on the standard MNIST dataset. It encodes the digit frames into a

latent space and then biases the latent space such that sweeping across

certain dimensions in the latent space causes changes in the digits in a

way that changes the classifier output. While sweeping across some other

dimensions only leads to changes in other stylistic factors like skew or

thickness of the stroke.

The idea was to modify the GCE framework to fit the RNN into

the pipeline. This could help us determine the causal factors in the

encoded latent space for this pretrained RNN.

GCE Overview:

https://github.com/dragen1860/pytorch-mnist-vae

https://github.com/siplab-gt/generative-causal-explanations

https://arxiv.org/pdf/2006.13913.pdf

The GCE framework uses a Convolutional Variational AutoEncoder (CVAE)

to encode the frames into a latent space. This is done using some initial

convolutional and pooling layers and then linear layers in a neural

network. The last encoder layer is split into 2 subparts which represent

the mean and log variance of the datapoint. Every frame gets encoded

into a mean and log var values in the latent space. Then it generates a

new datapoint from the normal distribution of these values and then

decodes the values using another decoder neural network. This consists

of layers exactly inverse of that of the encoder layer. This reconstructs the

frame back up again.

A loss function is declared as the difference between the initial input

frame and the generated output frame. The neural network is then

trained to minimize this loss thus ensuring the initial input frame is as

similar to the output frame. Eventually after some iterations, the weights

are trained so that each different class in the dataset gets encoded into

their own normal distributions in the latent space. Each of the decoder

network weights are also trained simultaneously so that a frame similar to

the input frame is generated from this normal distribution. The

dimensions of this normal distribution could represent different features

of the datapoint which may or may not be semantically important. This

part is the 'D' term in the loss function of the GCE framework which

ensures that the generated datapoint is within the data distribution and

not completely new.

Sweeping across latent dimensions

The GCE framework adds a classifier to this VAE architecture for which the

causal factors in latent space need to be found. This classifier classifies the

output of the VAE. Randomly generated samples from standard normal

distribution are passed into the decoder and then classified via this

classifier. This helps generate a measure of information transfer. Then the

GCE framework adds another term called 'C' term to the loss function

which shows the measure of information transfer due to the latent

parameters. When the GCE is trained with this measure integrated in it, it

causes the weights to be biased in a way that, sweeping certain latent

parameters, results in changes to the classifier output.

Loss function

To calculate the measure of information transfer, samples are randomly

generated. This helps obtain an estimate of the probability for the

distribution. Then, the same is repeated by fixing values for few latent

parameters that we want to bias as causal. This gives an estimate of the

probability distribution given a certain value for causal latent parameter.

These probabilities thus provide us with the information transfer that

takes place due to the causal latent distribution.

Doing this will eventually bias the latent parameters in a way that the

classifier output is affected by sweeping only certain latent parameters.

This can be explained with an example from the paper.

As it can be seen here, changing the latent factor alpha changes the color

of the generated output. This eventually results in a change in the

classifier output. However, changing beta changes features of the data

irrelevant to the classifier.

https://github.com/dragen1860/pytorch-mnist-vae
https://github.com/siplab-gt/generative-causal-explanations
https://arxiv.org/pdf/2006.13913.pdf


Report by Bhushan as a summary of findings in Fall 22 semester for Agile Systems Lab under the
guidance of Prof. Sponberg and Usama.

Implementation:

The input data in our case is an EPM sequence of 2500 frames and each

frame of 84x36 frames. Each pixel has a value of 0,1,-1 depicting the

difference in contrast with respect to the previous frame. Dealing with

negative values can be tricky. To simplify the problem, we convert the

84x36 image into a 84x72 image stacking the same frame on top of each

other. In the top frame we apply the following conversion for pixels: { 0

----> 0, 1 ----> 1, -1 ----> 0}. For the bottom frame we apply the following

conversion for pixels: { 0 ----> 0, 1 ----> 0, -1 ----> 1}. This converts the EPM

sequence into one superframe which encodes both negative and positive

values of the frame.

While implementing the same for the EPM sequence of the flower

stimulus, initially we tried to train the VAE using only the 'D' term to get

an estimate of the number of latent parameters required to encode the

frames. 6-8 latent parameters were sufficient to encode the frames. Each

frame was encoded into 8 latent factors and the entire sequence of 2500

frames was regenerated from this. The regenerated sequence was similar

to the input sequence except for some odd frames of which not enough

data points were available to encode into the dataset.

To incorporate the causal term, Monte Carlo samples are generated with

varying latent parameters to obtain the probability estimates required for

measuring information transfer. In the case of MNIST dataset, this was

done for individual frames which were generated and passed into the

classifier to get a probability output. In our case, the classifier is a RNN

which means the entire sequence would need to be passed for the

classifier to make predictions.

Passing the entire sequence into the RNN would require generating a

random sequence via Monte Carlo sampling. If we encode each frame

into its individual latent space, this would cause the sequence to have a

dimension of 20000 (2500x8) parameters. Assuming, the MNIST data

required 50 samples for 6 non causal factors, it is safe to estimate that the

samples required to estimate any meaningful probability with 20000

parameters would be exponentially high and impractical.

Challenges and possible approaches:

https://arxiv.org/abs/1608.06315

1)

A) As stated above one of the main challenges is to modify the

GCE architecture to take a sequential input. Decoding each frame to pass

it through the classifier does not require a large number of latent factor

samples to be generated. However, for a sequence this increases

exponentially. It can be hypothesized that indeed an entire sequence

would not require so many parameters to encode it into a lower

dimensional space. After all, the frames are very similar to each other.

Thus all of the frame sequence could be converted into one superframe

and then encoded into a fewer number of latent parameters.

A similar way to tackle the same issue is to encode all the

frames into their own latent parameters. Then, re-encode this sequence

of encoded parameters into a smaller latent space.

The above frame is a 125x160 image. The 125 represents the

number of frames in one oscillation. Each column is a 125x8

representation of 8 latent parameters of 125 frames in one oscillation.

These are mapped side by side for all 2500 frames (20 oscillations). As can

be seen, the data has some pattern that can be encoded into far fewer

dimensions.

The issue with this approach though is that firstly it would take

a lot of such sequences to train the GCE to learn any meaningful

distribution of the latent space for the sequence. Secondly, changing

parameters would change nearly every frame in the sequence which

might not preserve the sequential nature of the frames. This would make

no semantic sense and passing such a generated output to the RNN is not

useful at all.

B) Another way to possibly incorporate the sequential nature into

the GCE is for every iteration just choose one fixed frame to be changed

from the sequence. Regenerate the said frame via the decoder and then

observe the changes in the RNN for the changed frame. The concern with

this approach was if changing just one frame would change the classifier

output at all.

However, this seemed like a good approach to try first and see

the results. Initial tries did not show any major classifier output changes

on changing just one frame.

2)

A) The output of the RNN is for multiple muscles and predicts

spikes and gives spike timings as well. The information transfer metric

requires a probability value to find it. However, the RNN predicts the

spiking with a 0 or 1 probability at different times across the sequence.

Modifying this output to properly get a probability output is key to find

information transfer for the 'C' term.

B) The second output is a regression output which is even more

tricky due to the continuous nature of it. Again modifying this in some

way to get a probability value is required to find the information transfer.

This could be tackled by modifying the outputs as gaussian

distributions in some way which would give probability values that are

required. (More literature review required into this)

https://arxiv.org/abs/1608.06315

